Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338873

RESUMO

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10-6 S·cm-1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10-5 S·cm-1 and further increases to 10-3 S·cm-1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.


Assuntos
Líquidos Iônicos , Propano/análogos & derivados , Lítio , Eletrólitos , Íons , Poli A , Polímeros
2.
Des Monomers Polym ; 26(1): 198-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840643

RESUMO

Polymeric single chloride-ion conductor networks based on acrylic imidazolium chloride ionic liquid monomers AACXImCYCl as reported previously are prepared. The chemical structure of the polymers is varied with respect to the acrylic substituents (alkyl spacer and alkyl substituent in the imidazolium ring). The networks are examined in detail with respect to the influence of the chemical structure on the resulting properties including thermal behavior, rheological behavior, swelling behavior, and ionic conductivity. The ionic conductivities increase (by two orders of magnitude from 10-6 to 10-4 S·cm-1 with increasing temperature), while the complex viscosities of the polymer networks decrease simultaneously. After swelling in water for 1 week the ionic conductivity reaches values of 10-2 S·cm-1. A clear influence of the spacer and the crosslinker content on the glass transition temperature was shown for the first time in these investigations. With increasing crosslinker content, the Tg values and the viscosities of the networks increase. With increasing spacer length, the Tg values decrease, but the viscosities increase with increasing temperature. The results reveal that the materials represent promising electrolytes for batteries, as proven by successful charging/discharging of a p(TEMPO-MA)/zinc battery over 350 cycles.

3.
Anal Chem ; 95(29): 11085-11090, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37441802

RESUMO

Multifunctional metallic nanostructures are essential in the architecture of modern technology. However, their characterization remains challenging due to their hybrid nature. In this study, we present a novel photoreduction-based protocol for augmenting the inherent properties of imidazolium-containing ionic polymers (IIP)s through orthogonal functionalization with gold nanoparticles (Au NPs) to produce IIP_Au NPs, as well as novel and advanced characterization via three-dimensional correlation thermal field-flow fractionation (3DCoThFFF). Coordination chemistry is applied to anchor Au3+ onto the nitrogen atom of the imidazolium rings, for subsequent photoreduction to Au NPs using UV irradiation. Thermal field-flow fractionation (ThFFF) and the localized surface plasmon resonance (LSPR) of Au NPs are both dependent on size, shape, and composition, thus synergistically co-opted herein to develop mutual correlation for the advanced analysis of 3D spectral data. With 3DCoThFFF, multiple sizes, shapes, compositions, and their respective distributions are synchronously correlated using time-resolved LSPR, as derived from multiple two-dimensional UV-vis spectra per unit ThFFF retention time. As such, higher resolutions and sensitivities are observed relative to those of regular ThFFF and batch UV-vis. In addition, 3DCoThFFF is shown to be highly suitable for monitoring and evaluating the thermostability and dynamics of the metallic nanostructures through the sequential correlation of UV-vis spectra measured under incremental ThFFF temperature gradients. Comparable sizes are measured for IIP and IIP_Au NPs. However, distinct elution profiles and UV-vis absorbances are recorded, thereby reaffirming the versatility of ThFFF as a robust tool for validating the successful functionalization of IIP with Au to produce IIP_Au NPs.

4.
Materials (Basel) ; 16(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36614510

RESUMO

The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results.

5.
Molecules ; 28(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36615472

RESUMO

Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-p-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and the gaseous-phase activities of the abovementioned fire retardants within the prepared co- and ter-polymers were evaluated for the first time. Pyrolysis-Gas Chromatography/Mass Spectrometry was employed to identify the volatile products formed during the thermal decomposition of the modified polymers. Benzaldehyde, α-methylstyrene, acetophenone, triethyl phosphate and styrene (monomer, dimer and trimer) were detected in the gaseous phase following the thermal cracking of fire-retardant groups and through main chain scissions. In the case of PS modified with ADEPMAE, the evolution of pyrolysis gases was suppressed by possible inhibitory actions of triethyl phosphate in the gaseous phase. The reactive modification of PS by simultaneously incorporating P- (DEAMP or DEpVBP) and N- (MI) monomeric units, in the chains of ter-polymers, resulted in a predominantly condensed-phase mode of action owing to synergistic P and N interactions. The solid-state 31P NMR spectroscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy, Inductively-Coupled Plasma/Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy of char residues, obtained from ter-polymers, confirmed the retention of the phosphorus species in their structures.


Assuntos
Retardadores de Chama , Organofosfonatos , Poliestirenos/química , Retardadores de Chama/análise , Polímeros/química
6.
Polymers (Basel) ; 13(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641217

RESUMO

The aspects of fire retardation in some phosphorus-modified polymethyl methacrylate (PMMA) and polystyrene (PSt) polymers are reported in the present paper. Both additive and reactive strategies were employed to obtain the desired level of loading of the phosphorus-bearing compound/moiety (2 wt.% of P in each case). Test samples were obtained using bulk polymerization. The modifying compounds contained the P-atom in various chemical environments, as well as in an oxidation state of either III or V. With a view to gain an understanding of the chemical constitution of the gaseous products formed from the thermal decomposition of liquid additives/reactives, these materials were subjected to GC/MS analysis, whereas the decomposition of solid additives was detailed using the pyrolysis-GC/MS technique. Other investigations included the use of: Inductively-coupled Plasma/Optical Emission Spectroscopy (ICP/OES), solid-state NMR and FT-IR spectroscopy. In the case of PMMA-based systems, it was found that the modifying phosphonate ester function, upon thermal cracking, produced 'phosphorus' acid species which initiated the charring process. In the case of solid additives, it is more likely that the resultant phosphorus- and/or oxygenated phosphorus-containing volatiles acted as flame inhibitors in the gaseous phase. With the PSt-based systems, a probable process involving the phosphorylation of the phenyl groups leading to crosslinking and char formation is feasible.

7.
Polymers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685265

RESUMO

In this study, solvogels containing (2-((2-(ethoxycarbonyl)prop-2-en-1-yl)oxy)-ethyl) phosphonic acid (ECPA) and N,N'-diethyl-1,3-bis-(acrylamido)propane (BNEAA) as the crosslinker are synthesized by UV induced crosslinking photopolymerization in various solvents. The polymerization of the ECPA monomer is monitored by the conversion of double bonds with in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The morphology of the networks is characterized by in situ photorheology, solid state NMR spectroscopy, and scanning electron microscopy (SEM) of the dried gels. It is demonstrated that the storage modulus is not only determined by the crosslinker content in the gel, but also by the solvent used for preparation. The networks turn out to be porous structures with G' being governed by a rigid, phase-separated polymer phase rather than by entropic elasticity. The external and internal pKa values of the poly(ECPA-co-BNEAA) gels were determined by titration with a specially designed method and compared to the calculated values. The polymer-immobilized phosphonic acid groups in the hydrogels induce buffering behavior into the system without using a dissolved buffer. The calcium accumulation in the gels is studied by means of a double diffusion cell filled with calcium ion-containing solutions. The successful accumulation of hydroxyapatite within the gels is shown by a combination of SEM, energy-dispersive X-ray spectroscopy (EDX) and wide-angle X-ray scattering (WAXS).

8.
Langmuir ; 37(29): 8886-8893, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34275300

RESUMO

Organic/inorganic hybrid composite materials with the dispersed phases in sizes down to a few tens of nanometers raised very great interest. In this paper, it is shown that silica/epoxy nanocomposites with a silica content of 6 wt % may be obtained with an "in situ" sol-gel procedure starting from two precursors: tetraethyl orthosilicate (TEOS) and 3-aminopropyl-triethoxysilane (APTES). APTES also played the role of a coupling agent. The use of advanced techniques (bright-field high-resolution transmission electron microscopy, HRTEM, and combined small- and wide-angle X-ray scattering (SAXS/WAXS) performed by means of a multirange device Ganesha 300 XL+) allowed us to evidence a multisheet structure of the nanoparticles instead of the gel one typically obtained through a sol-gel route. A mechanism combining in a new manner well-assessed knowledge regarding sol-gel chemistry, emulsion formation, and Ostwald ripening allowed us to give an explanation for the formation of the observed lamellar nanoparticles.

9.
Polymers (Basel) ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751500

RESUMO

Solid polymer electrolytes for bipolar lithium ion batteries requiring electrochemical stability of 4.5 V vs. Li/Li+ are presented. Thus, imidazolium-containing poly(ionic liquid) (PIL) networks were prepared by crosslinking UV-photopolymerization in an in situ approach (i.e., to allow preparation directly on the electrodes used). The crosslinks in the network improve the mechanical stability of the samples, as indicated by the free-standing nature of the materials and temperature-dependent rheology measurements. The averaged mesh size calculated from rheologoical measurements varied between 1.66 nm with 10 mol% crosslinker and 4.35 nm without crosslinker. The chemical structure of the ionic liquid (IL) monomers in the network was varied to achieve the highest possible ionic conductivity. The systematic variation in three series with a number of new IL monomers offers a direct comparison of samples obtained under comparable conditions. The ionic conductivity of generation II and III PIL networks was improved by three orders of magnitude, to the range of 7.1 × 10-6 S·cm-1 at 20 °C and 2.3 × 10-4 S·cm-1 at 80 °C, compared to known poly(vinylimidazolium·TFSI) materials (generation I). The transition from linear homopolymers to networks reduces the ionic conductivity by about one order of magnitude, but allows free-standing films instead of sticky materials. The PIL networks have a much higher voltage stability than PEO with the same amount and type of conducting salt, lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). GII-PIL networks are electrochemically stable up to a potential of 4.7 V vs. Li/Li+, which is crucial for a potential application as a solid electrolyte. Cycling (cyclovoltammetry and lithium plating-stripping) experiments revealed that it is possible to conduct lithium ions through the GII-polymer networks at low currents. We concluded that the synthesized PIL networks represent suitable candidates for solid-state electrolytes in lithium ion batteries or solid-state batteries.

10.
Polymers (Basel) ; 11(8)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357499

RESUMO

A series of new flame retardants (FR) based on dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO) incorporating acrylates and benzoquinone were developed previously. In this study, we examine the fire behavior of the new flame retardants in polyisocyanurate (PIR) foams. The foam characteristics, thermal decomposition, and fire behavior are investigated. The fire properties of the foams containing BPPO-based derivatives were found to depend on the chemical structure of the substituents. We also compare our results to state-of-the-art non-halogenated FR such as triphenylphosphate and chemically similar phosphinate, i.e. 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO), based derivatives to discuss the role of the phosphorus oxidation state.

11.
ACS Appl Mater Interfaces ; 8(41): 28208-28215, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27670102

RESUMO

Nondestructive flaw detection in polymeric materials is important but difficult to achieve. In this research, the application of magnetite nanoparticles (MNPs) in nondestructive flaw detection is studied and realized, to the best of our knowledge, for the first time. Superparamagnetic and highly magnetic (up to 63 emu/g) magnetite core-shell nanoparticles are prepared by grafting bromo-end-group-functionalized poly(glycidyl methacrylate) (Br-PGMA) onto surface-modified Fe3O4 NPs. These Fe3O4-PGMA NPs are blended into bisphenol A diglycidylether (BADGE)-based epoxy to form homogeneously distributed magnetic epoxy nanocomposites (MENCs) after curing. The core Fe3O4 of the Fe3O4-PGMA NPs endows the MENCs with magnetic property, which is crucial for nondestructive flaw detection of the materials, while the shell PGMA promotes colloidal stability and prevents NP aggregation during curing. The eddy current testing (ET) technique is first applied to detect flaws in the MENCs. Through the brightness contrast of the ET image, surficial and subsurficial flaws in MENCs can be detected, even for MENCs with low content of Fe3O4-PGMA NPs (1 wt %). The incorporation of Fe3O4-PGMA NPs can be easily extended to other polymer and polymer-based composite systems and opens a new and very promising pathway toward MNP-based nondestructive flaw detection in polymeric materials.

12.
ACS Appl Mater Interfaces ; 7(23): 12339-47, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25496492

RESUMO

Polymers for all-organic field-effect transistors are under development to cope with the increasing demand for novel materials for organic electronics. Besides the semiconductor, the dielectric layer determines the efficiency of the final device. Poly(methyl methacrylate) (PMMA) is a frequently used dielectric. In this work, the chemical structure of this material was stepwise altered by incorporation of cross-linkable and/or self-organizing comonomers to improve the chemical stability and the dielectric properties. Different types of cross-linking methods were used to prevent dissolution, swelling or intermixing of the dielectric e.g. during formation processes of top electrodes or semiconducting layers. Self-organizing comonomers were expected to influence the dielectric/semiconductor interface, and moreover, to enhance the chemical resistance of the dielectric. Random copolymers were obtained by free radical and reversible addition-fragmentation chain transfer (RAFT) polymerization. With 6-[4-(4'-cyanophenyl)phenoxy]alkyl side chains having hexyl or octyl spacer, thermotropic liquid crystalline (LC) behavior and nanophase separation into smectic layers was observed, while copolymerization with methyl methacrylate induced molecular disorder. In addition to chemical, thermal and structural properties, electrical characteristics like breakdown field strength (EBD) and relative permittivity (k) were determined. The dielectric films were studied in metal-insulator-metal setups. EBD appeared to be strongly dependent on the type of electrode used and especially the ink formulation. Cross-linking of PMMA yielded an increase in EBD up to 4.0 MV/cm with Ag and 5.7 MV/cm with PEDOT: PSS electrodes because of the increased solvent resistance. The LC side chains reduce the ability for cross-linking resulting in decreased breakdown field strengths.

13.
J Colloid Interface Sci ; 325(1): 149-56, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18571661

RESUMO

Different organic/inorganic compositions and deposition methods were used to prepare superhydrophobic surfaces using metal alkoxides and the sol-gel process. Both surface roughness and composition had to be adjusted in order to obtain very high contact angles and low contact angle hysteresis as a necessary requirement for superhydrophobicity. Multilayer samples with a fluorinated organic-inorganic top layer showed water contact angles of about 157 degrees with low hysteresis (2 degrees ). Water drops rolled easily off their surface at a tilt angle as low as 4 degrees .

14.
Biomacromolecules ; 6(1): 439-46, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15638550

RESUMO

Sequential copolymerizations of trimethylene carbonate (TMC) and l-lactide (LLA) were performed with 2,2-dibutyl-2-stanna-1,3-oxepane as a bifunctional cyclic initiator. The block lengths were varied via the monomer/initiator and via the TMC/l-lactide ratio. The cyclic triblock copolymers were transformed in situ into multiblock copolymers by ring-opening polycondensation with sebacoyl chloride. The chemical compositions of the block copolymers were determined from (1)H NMR spectra. The formation of multiblock structures and the absence of transesterification were proven by (13)C NMR spectroscopy. Differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), and dynamic mechanical analysis (DMA) measurements confirmed the existence of a microphase-separated structure in the multiblock copolymers consisting of a crystalline phase of poly(LLA) blocks and an amorphous phase formed by the poly(TMC) blocks. Stress-strain measurements showed the elastomeric character of these biodegradable multiblock copolymers, particularly in copolymers having epsilon-caprolactone as comonomer in the poly(TMC) blocks.


Assuntos
Dioxanos/síntese química , Poliésteres/síntese química , Varredura Diferencial de Calorimetria , Dioxanos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Poliésteres/química , Espalhamento de Radiação , Temperatura , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...